

VASAVI COLLEGE OF ENGINEERING (AUTONOMOUS), HYDERABAD Accredited by NAAC with A++ Grade
 B.E. (E.C.E.) V-Semester Main \& Backlog Examinations, Jan./Feb.-2024
 Analog and Digital Communication

Time: $\mathbf{3}$ hours
Max. Marks: 60
Note: Answer all questions from Part-A and any FIVE from Part-B
Part-A $(10 \times 2=20 \mathrm{Marks})$

Q. No.	Stem of the question	M	L	CO	PO	PSO
1.	Define DSBSC modulation and its significance in AM communication.	2	1	1	2	1
2.	What are the primary components of a typical amplitude modulation (AM) transmitter and their respective functions in the modulation process?	2	1	1	2	1
3.	What is the difference between NBFM and WBFM in frequency modulation?	2	1	2	1	2
4.	Explain the differences between phase modulation (PM) and frequency modulation (FM) in the context of angle modulation.	2	1	2	2	2
5.	Explain the concept of quantization in Pulse Code Modulation (PCM).	2	1	3	2	2
6.	Describe the process of pulse width modulation (PWM) and how it differs from pulse amplitude modulation (PAM).	2	1	3	2	1
7.	Define M-ary signaling in digital communication.	2	1	4	2	1
8.	Compare and contrast different digital modulation schemes such as ASK, PSK, and FSK. Explain the key advantages and disadvantages of each scheme in the context of digital communication.	2	2	4	2	2
9.	What are the types of transmission errors that error control coding helps address?	2	1	5	1	1
10.	Compare the efficiency of Shannon-Fano algorithm and Huffman coding in terms of compression and decoding complexity. $\text { Part-B }(5 \times 8=40 \text { Marks })$	2	2	5	1	2
11.2)	Compare Square Law Modulation to other AM modulation techniques and outline the advantages it offers in amplitude modulation.	4	2	1	1	1
b)	In a practical AM communication system, the carrier frequency is 1 MHz , and the modulating signal is a sinusoidal waveform with a frequency of 10 kHz . Calculate the upper and lower sideband frequencies and their respective bandwidths. Also, determine the total bandwidth of the modulated signal.	4	4	1	1	1

12. a) Describe the significance of pre-emphasis and de-emphasis in FM systems. Present a numerical example illustrating how pre-emphasis and de-emphasis parameters are chosen for a specific FM transmitter.
b) Given a phase modulation (PM) signal with a frequency deviation of 25 kHz and a modulating frequency of 5 kHz , calculate the peak phase deviation. Explain the concept of peak frequency deviation and its relationship with the phase deviation.
13. a) Explain the concept of companding in PCM (Pulse Code Modulation) systems. Calculate the quantization noise power for any PCM signal assuming some quantization levels and uniform quantization.
b) In a PAM (Pulse Amplitude Modulation) system, the pulse duration is 10 microseconds, and the sampling rate is 100 kHz . Calculate the Nyquist rate and the necessary quantization levels to prevent aliasing.
14. a) In the context of an M-ary signaling scheme, elaborate on decision regions and the criteria required for maximum likelihood decoding. Calculate the probability of error for a specific M-ary scheme when given the signal-to-noise ratio.
b) In a PSK (Phase Shift Keying) communication system, if the signal-to-noise ratio (SNR) is 20 dB and 16-QAM is used, calculate the symbol error rate. Discuss the trade-off between modulation order and symbol error rate in digital communication.
15. a) Discuss the principles of convolutional codes and highlight their advantages over block codes for error correction. Provide an illustrative example of a convolutional encoder and decoder in action to correct a specific error pattern.
b) For a systematic linear block code [7,4], the three parity check digits are given by $\mathrm{C} 1=\mathrm{m} 1 \oplus \mathrm{~m} 2 \oplus \mathrm{~m} 3 ; \mathrm{C} 2=\mathrm{ml} \oplus \mathrm{m} 2 \oplus \mathrm{~m} 4 \quad ; \mathrm{C} 3=\mathrm{m} 1$ $\oplus \mathrm{m} 3 \oplus \mathrm{~m} 4$.
(i) Construct generator matrix
(ii) Construct code generated by this matrix.

Decode the received word 1011001.
16. a) In an AM broadcasting system, the carrier frequency is 1 MHz , and the modulation index is 0.8 . If the maximum amplitude of the modulating signal is 2 V , calculate the peak amplitude of the AM signal and the total power in the transmitted signal.
b) In an FM radio broadcast system, the carrier frequency is 100 MHz , and the maximum frequency deviation is 75 kHz . Calculate the peak frequency deviation in radians per second (rad/s) and the modulation index for this FM signal.

	2	2	2	2
	4	2	2	2
	2	3	2	2
	4	3	2	2
	2	4	1	1
	4	4	1	1
	2	5	2	2
	4	5	2	1
	4	1	1	1
	4	2	2	2

17. Answer any two of the following:
a) In a Pulse Code Modulation (PCM) system, the analog signal has a bandwidth of 4 kHz . Calculate the Nyquist rate and the minimum number of quantization levels required to represent the signal without aliasing.
b) In a QAM (Quadrature Amplitude Modulation) system, the constellation diagram shows eight equally spaced symbols on the I-Q plane. If the signal-to-noise ratio (SNR) is 20 dB , calculate the bit error rate (BER) for this system.
c) You are designing an error control code with a Hamming distance of 5. Calculate the minimum number of error-correcting bits required for a code to correct two-bit errors. Provide the code rate and describe its error-correcting capabilities.

M : Marks; L: Bloom's Taxonomy Level; CO; Course Outcome; PO: Programme Outcome

i)	Blooms Taxonomy Level - 1	20%
ii)	Blooms Taxonomy Level - 2	30%
iii)	Blooms Taxonomy Level - $\& 4$	50%

